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Abstract
We study the electromagnetic two-body problem of classical electrodynamics
as a prototype dynamical system with state-dependent delays. The equations
of motion are analysed with reference to motion along a straight line in the
presence of an electrostatic field. We consider the general electromagnetic
equations of motion for point charges with advanced and retarded interactions
and study two limits, (a) retarded-only interactions (Dirac electrodynamics)
and (b) half-retarded plus half-advanced interactions (Wheeler–Feynman
electrodynamics). A fixed point is created where the electrostatic field balances
the Coulombian attraction, and we use local analysis near this fixed point to
derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf
bifurcation about an unphysical fixed point and find that it is subcritical. In case
(b), there is a Hopf bifurcation about a physical fixed point and we study several
families of periodic orbits near this point. The bifurcating periodic orbits are
illustrated and simulated numerically, by introducing a surrogate dynamical
system into the numerical analysis which transforms future data into past data
by exploiting the periodicity, thus obtaining systems with only delays.
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1. Introduction

In recent years, interest in dynamical systems with state-dependent delays has grown
considerably despite the difficulties due to the infinite dimensionality of the phase space,
and a lack of a systematic theory for such problems. Examples of such systems can be
found in contexts as different as population dynamics [1], neural networks [2] and secure
communication [3]. In this paper, we investigate the dynamics of two point charges as
described by classical electrodynamics [4, 5]—a fundamental Physics model that belongs to
this class of systems. So far, because of its mathematical complexity, this problem has mostly
been tackled by invoking approximations whose reliability is difficult to control. We will
consider the full problem in a one-dimensional setup, with the two particles moving along a
straight line in the presence of an external electrostatic field.

Besides delayed and advanced interactions, the electromagnetic equations of motion of
charged particles have a further peculiarity, namely the presence of a third-order time derivative
which is responsible for seemingly paradoxical results. An example was discovered by Eliezer
[6] for the motion of a single electron in the Coulombian field of an infinitely massive proton:
the electron is only attracted until the third-derivative term causes the acceleration to change
the sign, and the electron is always repelled [6]. This avoided collision is called Eliezer’s
theorem and the fact that the electron always escapes collision suggests that the underlying
physical model is somehow over-simplified. In fact, in [7], it was suggested that some
potentially complex dynamics is lost in the infinite-mass limit, which removes the delay from
the equations of motion. One of the motivations of this paper is to study the effect of finite
masses in the case of two particles moving along the same straight line. Since in 1D there are
no centrifugal forces that can sustain a bounded motion, we introduce an external electrostatic
field to provide such a force.

We start from the general equations of motion [4] for charged particles with retarded
and advanced interactions, and consider the particular cases of (a) Dirac electrodynamics
with retarded-only interactions [5] and (b) Wheeler–Feynman electrodynamics [8] with half-
retarded plus half-advanced interactions, a case of physical interest where the self-interaction
vanishes. The external field produces a fixed point by balancing the Coulombian attraction
and we study the conditions for a Hopf bifurcation in both cases.

One of the differences with respect to a Coulombian two-body problem is an exponential
correction to the force field (see (2)). In case (a), we show that for the correct sign of the
exponent (which is absent in the Newtonian formulation) no Hopf bifurcation occurs, but
upon changing the sign of the exponent, a family of periodic orbits may appear/disappear in
a subcritical Hopf bifurcation. As a result, it turns out that a family of periodic orbits exists,
although this happens only for the wrong sign of the exponent. In spite of the unphysical
character of this solution, we have nevertheless explored the corresponding periodic orbits,
as an example of state-dependent delay dynamics with electromagnetic-like difficulties and
correct Newtonian limit. Moreover, the delicate dependence on the precise force law is a
warning for future studies of a realistic version of Eliezer’s theorem with a finite protonic
mass, i.e. velocity-dependent forces should be carefully taken into account, if the electron
changes direction to avoid a collision.

In case (b), families of periodic orbits for the full nonlinear equations are found in the
vicinity of the fixed point for the correct sign of the exponent, near to the critical parameter
values found from the linear analysis, and so we can conclude that the Wheeler–Feynman
electrodynamics undergoes a physical Hopf bifurcation.

In both cases we numerically study the full nonlinear equations to determine the bifurcating
periodic orbits. Despite the simplicity of the physical setup, it is necessary to take some care
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in the numerical analysis, starting with the choice of an appropriate numerical scheme. In
particular, to avoid the known explosive instabilities of the Dirac equation [9], case (a) must
be integrated backward in times. As a result, the delay, becomes an advance. Case (b), the
Wheeler–Feynman electrodynamics, does not suffer from runaway instabilities and can be
integrated either forward or backward in time, but the problem contains both advanced and
retarded arguments in either time direction. We can study the existence of periodic orbits
of advanced and advanced-retarded equations by subtracting multiples of the period from
the advanced arguments to transform them into retarded ones. We do this by introducing a
surrogate dynamical system with an adjustable parameter that is equivalent to the original
dynamics along a periodic orbit, when the parameter is equal to a multiple of the period. The
equations of motion are then integrated with RADAR5, an integrator for differential-algebraic
equations with state-dependent delay [10].

In case (a), we find that the time-reversed surrogate dynamical system has a stable
invariant set in the form of a paraboloid with the fixed point as its base. The system undergoes
a subcritical Hopf bifurcation from the fixed point on this paraboloid, and on the correct side
of the critical parameter value there is a unique unstable orbit. This periodic orbit of the
Dirac equations is determined by following orbits on the paraboloid with smaller and larger
amplitudes that spiral away from the periodic orbit and using a bisection technique. Case (b)
is harder to treat numerically because the Wheeler–Feynman equations are reversible and do
not possess asymptotically stable limit sets near the fixed points. Nevertheless we find two
families of periodic orbits for the full nonlinear equations including one where the delay and
advance time for small amplitude orbits is exactly half a period, and another where the heavier
particle is at rest, while the lighter particle oscillates, which we call frozen proton orbits.

In summary, in the next section, we introduce the model and the corresponding notations,
and show the existence of two fixed point solutions, one physical and other unphysical, while
section 3 is devoted to the linear stability analysis of the general model. In section 4, the
linear stability analysis is applied to the case of the Dirac equations to show that there is
no Hopf bifurcation form the physical point, but that there is a Hopf bifurcation from the
unphysical point for arbitrary mass ratios. Section 5 is devoted to a numerical study of this
Hopf bifurcation, which is revealed to be subcritical, and the resulting branch of periodic
orbits is studied. In section 6 the linear stability analysis is applied to the Wheeler–Feynman
equations of motion, revealing the possibility of Hopf bifurcations for both the physical and
unphysical point. In section 7 the Hopf bifurcation from the physical point for the Wheeler–
Feynman equations is studied using numerical simulations. In the last section we summarize
our results and comment on future perspectives.

2. The model

We introduce the equations for straight line motion, by referring to a unit system where
the speed of light is c = 1, the electronic mass is m2 = 1 and the electronic charge is
e2 = −1. The two point particles have charges e1 = 1 and e2 = −1 and masses m1 and
m2, respectively. Assuming particle 2 to be on the left-hand side along the line of motion,
we introduce world-lines parametrized by the proper time τk in a reduced Minkowski space
xk(τk) = (tk(τk), xk(τk)) where k ∈ (1, 2) and xk is the position along the line (with a negative
sign for particle 1, in order to obtain more symmetric equations). Once the Minkowski velocity
is a time-like unit vector, it is convenient to parametrize it by the velocity angle φk:(

dtk

dτk

,
dxk

dτk

)
= (cosh(φk), sinh(φk)). (1)
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The electrodynamics of point charges was derived by Eliezer [4] generalizing Dirac’s theory
[5]. In Eliezer’s theory the particle fields are defined by the most general solution of Maxwell’s
equations, a solution containing retarded and advanced fields with a constant composition
parameter χ . For the special case of collinear motion, the magnetic field of each particle
vanishes along the line of motion and the electric-field has a simple form with the familiar
Coulombian limit (see [11]). By expressing the equations of motion [4] using the velocity
angle (1), we find (see [11]) that

mk

dφk

dτk

− 2

3
χ

d2φk

dτ 2
k

= (1 + χ)
exp

(
2φ−

j

)
2r2

kj (−)
+ (1 − χ)

exp
(−2φ+

j

)
2r2

kj (+)
− εk, (2)

where k = 1, 2 and j = 3 − k, and εk is the external electric field at position xk. Unlike
the case of three-dimensional motion, the electric field evaluated along the line of motion
depends only on the retarded and advanced velocities and not on the retarded and advanced
accelerations. This simplification yields delay equations rather than neutral-delay equations.
The presence of the exponential terms exp

(
2φ−

j

)
and exp

(−2φ+
j

)
is one of the key differences

mentioned in the introduction with respect to a Newtonian model. The electric field εk is
assumed to depend linearly on the position (see (5) and (7) for a more precise definition). This
is the minimal assumption which breaks the translational invariance and thus avoids the onset
of secular terms. Finally, equation (2) uses the position of the other particle at an advanced
and a retarded position, each defined by a state-dependent condition rkj (±), as follows. The
state-dependent advanced-light-cone distance between the two particles, rkj (+) is defined by

rkj (+) ≡ t+
j − tk = ∣∣xk(tk) + xj

(
t+
j

)∣∣, (3)

where t+
j is the advanced time of particle j and, because of the introduction of a reversed

coordinate for particle 1, the distance is expressed as the sum of the coordinates. The state-
dependent retarded-light-cone distance between the particles, rkj (−), is defined by

rkj (−) ≡ tk − t−j = ∣∣xk(tk) + xj

(
t−j

)∣∣, (4)

where t−j is the retarded time of particle j and again because of the reversed coordinate for
particle 1, the distance is expressed as the sum of the coordinates. The equations are referred to
as implicitly state-dependent, since the advanced and retarded times t±j depend on the state of
the system xj

(
t±j

)
at the advanced/retarded time t±j , and (3) and (4) must be solved implicitly

for each tk to find the corresponding t±j . Implicitly state-dependent problems are much more
difficult to tackle than the more commonly considered explicitly state-dependent problems,
where the delayed time t−j would be a function of the current time tk and current state xj (tk)

only.
In the small φk limit, the force in equation (2) reduces to the standard Coulombian

attraction (after undoing the reversed-coordinate transformation). More generally, the term
exp

(
2φ−

j

)
corresponds to the usual denominator of the Lienard–Wiechert fields [7] expressed

in velocity-angle variables. Because of this exponential, at large velocities the equation is very
different from the Galilei-invariant Coulomb problem with self-interaction. Because of the
complexity of the problem, we shall not study solutions with very large velocity, even though
these would be interesting candidates for identifying stable time-dependent orbits.

The equations of motion (1)–(4) formally have two families of fixed points, both with
φ1 = φ2 = 0, and the electric fields having the same value εo ≡ 1

/(
4r2

o

)
where ro > 0 and

(i) x1 + x2 = 2ro and (ii) x1 + x2 = −2ro. Point (i) violates the assumption that particle 2
is on the left-hand side and is artificial, since it corresponds to the wrong sign of both the
past and the future velocities in the Lienard–Wiechert field of the other particle (right-hand
side of equation (2)). This term is responsible for the only difference between the dynamics
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about the two fixed points. In a simplified model containing only the Coulombian interparticle
interaction, these points would be equivalent, so that (i) and (ii) are called the unphysical and
the physical point, respectively.

3. Linear stability analysis

We will study period solutions of the equations of motion (1)–(4), by finding Hopf bifurcations
from the fixed points. To do this we linearize the equations of motion about the equilibrium
states, and identify parameter values for which the fixed points are linear centers. Using
the evolution parameter t = t1 = t2 and expanding the cosh(φk) on the right-hand side of
equation (1) show that up to O

(
φ2

k

)
we have t = τ1 = τ2. We further shift the origin of each

particle’s coordinates to that of the fixed point of interest and define the new coordinates as

xk = ±ro + royk, (5)

where ro > 0, so that the linearization of equation (1) yields

φk = roẏk. (6)

For the electrostatic field we assume the linear spatial dependence

εk = εo(1 + αkyk), (7)

where εo ≡ 1
/(

4r2
o

)
, which removes the translational invariance from the system, and the two

families of fixed points of the system reduce to two isolated fixed points, (i) the unphysical
point, xk = ro and φk = yk = 0, and (ii) the physical point, xk = −ro and φk = yk = 0, for
both of which the electrostatic force and the interparticle attraction are in balance.

The linearly varying electric field also removes the exact symmetry of the equations of
motion (1)–(4), defined in the case of constant electric fields by a one-parameter continuous
boost symmetry γB ≡ cosh(�):

xj → cosh(�)xj − sinh(�)tj ,

tj → cosh(�)tj − sinh(�)xj ,

φj → φj + �,

(8)

where � is a real parameter (which must be the same for both particle transformations).
Symmetry (8) is the Lorentz invariance of the equations of motion. Since the electric field
is unchanged by this symmetry transformation, changing the electric field is an action above
the symmetry transformation. This symmetry that the equations of motion are the same in
two inertial frames moving at a constant speed about each other causes secular behavior in
numerical simulations with constant electric fields, as the orbit travels with a small constant
velocity representing the symmetry drift; thus, we consider the case where at least one αk �= 0.

Linearizing the equations of motion (1)–(4) together with (5)–(7), the linear correction
to the delay gives only second-order contributions to the tangent dynamics, so that we can
approximate the delay with 2ro, i.e. the delay is constant. Substitution of equation (6) into
equation (2) yields the linearized equations of motion:

−2

3
roχy

...
k + mkroÿk = (1 + χ)

8r2
o

[∓yk ∓ yj (t − 2ro) + 2roẏj (t − 2ro)]

+
(1 − χ)

8r2
o

[∓yk ∓ yj (t + 2ro) − 2roẏj (t + 2ro)] − αk

4r2
o

yk, (9)

where k = 1, 2 and j = 3 − k. In order to obtain a unified treatment of the general case, we
replace αk with ψk according to the following relation:

(αk ± 1) ≡ −(1 − ψk), k = 1, 2. (10)
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Now, we search for harmonic linear modes of equation (9) by making the ansatz yk = Re(zk)

where zk = Ak exp(iωt). Here, and throughout, i ≡ √−1. It is also convenient to introduce
the parameter σ ≡ 2roω measuring the phase shift during the light-cone time-lag 2ro. From
equation (9), we obtain equations for the complex numbers Ak:(

B1 B±
B± B2

)(
A1

A2

)
=

(
0
0

)
, (11)

where

B± ≡ σ sin(σ ) ∓ cos(σ ) + iχ(σ cos(σ ) ± sin(σ )),

Bk ≡
(

1 − ψk + mkroσ
2 − iχσ 3

3

)
, k = 1, 2.

(12)

Here we consider two cases of equation (2): (a) χ �= 0, including the case χ = 1 which
represents the Dirac theory [5] with retarded fields. For low-velocity initial conditions,
equation (2) with χ = 1 presents an exponential runaway instability that forces us to integrate
it backward [11]. Along a backward integration the delay becomes an advance, which makes
integration impossible. Assuming the orbit to be periodic, we introduce a method to re-access
this retarded information from future data using the periodic property (we recall that future
data are known along the backward integration). (b) χ = 0 which represents the Wheeler–
Feynman electrodynamics [8]. In this case the forward integration needs future data, and we
again use the periodic property to read future data from the interpolated past using a period-T
shift. In all cases treated here the method only works for periodic orbits by reading the future
data from the interpolated past via the period shift. In the following we discuss the two cases
separately.

4. The mixed case (a)

We first consider the non time-symmetric case χ �= 0. Equating the determinant of
equation (11) to zero, we obtain one equation for the real part and one for the imaginary
part, respectively. The imaginary part yields

(m1 + m2)roσ
2 = ψ1 + ψ2 + a(σ )σ 2, (13)

where a(σ ) is defined as

a(σ ) = 6(± cos(σ ) − σ sin(σ ))(±sin(σ ) + σ cos(σ )) − 2σ 3

σ 5
. (14)

Using (13), the real part of the determinant can be rearranged into a quadratic equation for the
ψk variables:

θ2 + (m2 − m1)aσ 2θ + C = 0, (15)

where

θ ≡ m2ψ1 − m1ψ2, (16)

and C is defined by

C = (m1 + m2)
2

[
−1 − aσ 2 + (±cos(σ ) − σ sin(σ ))2

−χ2(±sin(σ ) + σ cos(σ ))2 +
χ2σ 6

9

]
− m1m2a

2σ 4. (17)
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Since equations (13) and (15) are both even in σ , it is sufficient to consider σ = 2roω > 0 in
what follows. The corresponding solutions with σ < 0 will simply have reversed direction of
rotation.

The discriminant D of the quadratic equation (15) is

D(σ) = 4(m1 + m2)
2

[
(±cos(σ ) − σ sin(σ ))2 +

χ2σ 6

9

]

×
[

9

σ 6
(±sin(σ ) + σ cos(σ ))2 − 1

]
. (18)

For the physical fixed point (ii), D(σ) < 0 for all σ > 0 and so there are no real solutions of
equation (15), and so no periodic orbits bifurcating from this fixed point. On the other hand,
in the case of the unphysical point (i), D(σ) > 0 for all σ ∈ (0, σ ∗) where σ ∗ ≈ 1.494 033
solves

9(sin(σ ) + σ cos(σ ))2 − σ 6 = 0, (19)

so there always exists a Hopf bifurcation for any mass ratio in the case of the unphysical point
(i). In principle one can choose an arbitrary χ �= 0, σ ∈ (0, σ ∗) and M ≡ m1 + m2 and find
solutions for α from equation (15).

In the Dirac case, χ = 1, for fixed point (i) with α = 0 in the large-M limit, there exists
an asymptotic root of equations (9) that is given by

σ 

√

12μ/M, ro 
 M/(12μ2), (20)

where μ = m1m2/M , and the critical period Tc = 2π/ωc defined by σ = 2ωcro is

Tc = π√
108

M3/2

μ5/2
. (21)

In the infinite-M limit equation (20) predicts an infinite separation and a vanishing oscillation
frequency.

5. Numerical integration of the Dirac case (a)

We consider the unphysical point (i) in the Dirac case χ = 1, Now choose masses m1 �= m2

and σ ∈ (0, σ ∗), and solve equation (15) to find θ . In the case α1 = α2 = α, equation (16)
implies that α = −2+θ/(m2 −m1). Equation (13) can be solved to find ro, while εo, ωc and Tc

follow from εo = 1
/(

4r2
o

)
, σ = 2roωc and Tc = 2π/ωc. Hence we determine the bifurcation

point from the linearized equations of motion (7), (9) and (10).
To solve the nonlinear equations of motion (1)–(4), we parametrize the solution of

equations (1)–(4) by t = t1(τ1) = t2(τ2), whereby each proper time is a function of
the common particle time and τk is a monotonic function of t with derivative defined by
equation (1), i.e.

dτk

dt
= 1

cosh(φk)
. (22)

Equation (22), complemented by equations (1)–(4) and by a suitable portion of the history,
defines a Cauchy problem for a state-dependent delay equation. For low-velocity initial
conditions, equation (2) presents an exponential runaway instability that forces us to integrate
it backward [11]. When integrating backward, it is necessary to use the future to construct
the past, which is problematic because the algebraic conditions (1) need past data. However,
this difficulty can be overcome along a periodic orbit by shifting a past state forward by one

7



J. Phys. A: Math. Theor. 43 (2010) 205103 J De Luca et al

period so that it becomes a future state so that along the periodic motion equation (4) becomes
equivalent to

t−j = t − rkj + T = ∣∣xk(t) + xj

(
t−j

)∣∣. (23)

Noting that Tc = 4πro/σ > 8ro, and that in the limit of small amplitude periodic orbits (close
to the bifurcation point) rkj is equal to 2ro, equation (23) is guaranteed to produce an advanced
argument for such orbits. Should the period and amplitude vary as we vary other parameters
until T < rkj , then (23) would no longer produce an advanced argument, but this could be
remedied by replacing T by nT in (23) for a suitable integer n, although in practice we did not
need to do this for the Dirac problem.

By replacing equation (4) with equation (23), we obtain a surrogate dynamical system
with an adjustable parameter T. In this way we have a well-posed Cauchy problem with
suitable initial data. In the following we study this surrogate dynamical system defined by
equations (1), (2) and (23) near the critical point. It is easy to verify that if the surrogate
system has a periodic orbit of period T, this is also an orbit of the original physical problem.

The nonlinear equations of motion (1)–(4), (22) and (23) are then integrated numerically
with RADAR5, an integrator for differential-algebraic equations with state-dependent delay
[10], using the just determined parameters Tc and εo while α is taken to be close to its value at
the Hopf bifurcation. We use initial conditions yk = Ak cos(ωt +βk), with β1 = 0, A1 set equal
to some preassigned small value, A2/A1 and β2 in agreement with the critical behavior defined
by equation (11) and ω equal to or slightly shifted with respect to criticality to correspond
to the same period T ≈ Tc set in the surrogate system. The parameter T in (23) is then the
only parameter which is varied during the actual numerical integration. Every n time units T
is adjusted to agree with the numerically measured period of the oscillation. If the amplitude
of the oscillation remains constant, these adjustments ensure that the period of the resulting
solution equals T itself.

Performing these computations we find that solutions for the time reversed surrogate
system rapidly converge to an invariant paraboloid which has a fixed point as its base. On this
surface there is a unique unstable periodic orbit for each α < α∗ (where α∗ is the value of α at
the bifurcation), and no other periodic orbits were found. On the paraboloid, solutions inside
the periodic orbit spiral very slowly into the fixed point, while solutions outside the periodic
orbit spiral away. For α > α∗ the invariant paraboloid persists and is still stable for the time
reversed surrogate system, but in this case there are no periodic orbits on or off the paraboloid,
and orbits on the paraboloid spiral away from the fixed point.

Despite the infinite dimensionality of the phase space, the unstable periodic orbits lie on
a stable invariant paraboloid of the backward dynamics, and so can be found by identifying an
initial condition leading to a solution of the surrogate system that spirals into the fixed point,
and another initial condition leading to a solution that spirals out. Varying the initial condition
between these values, using the bisection algorithm, the periodic orbit is found, and the entire
numerical procedure works well.

As an example, in figure 1 we plot a phase portrait with 11 orbits of the time reversed
surrogate system for m1 = 1, m2 = 250, ro = 27.946 237. For these parameter values the
linearization with σ = 0.2 indicates a Hopf bifurcation at α∗ = 0.115 232 with the zero
amplitude periodic orbit thus created having period Tc = 1755.913 842. The numerically
computed trajectories shown in figure 1 were computed with α = 0.113 < α∗, and show a
periodic orbit (thin line) whose period is T = 1761.874 955. The ten other orbits (thick lines)
are not periodic, but clearly lie on an invariant surface in the infinite dimensional flow, which
has the form of a paraboloid. This invariant surface is attractive in the time-reversed surrogate
system, and so can be found by taking arbitrary nearby initial conditions and integrating

8
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Figure 1. Orbits with m1 = 1, m2 = 250, ro = 27.946 237, α = 0.113 showing the periodic orbit
(thin line) and ten other spiralling orbits of the time reversed surrogate system.

until the end of the initial transient dynamics as the solution converges to the paraboloid.
Although difficult to see from the figure, the orbits below the period solution are spiralling
toward the fixed point, while the orbit above is spiralling away. Of course, for non-periodic
orbits, equation (23) means that the dynamics of the surrogate system is not equivalent to that
of the original state-dependent delay equations, but nevertheless we expect such an invariant
manifold to also exist for the original system.

Next, we consider the evolution of the periodic orbit as the electric field parameter α is
varied. We again consider m1 = 1, m2 = 250 and ro = 27.946 237, and then vary α between
the critical value α∗ = 0.115 2323 and α∗ − 0.005. In figure 2 we see that the amplitude of
the periodic orbit varies proportional to (α∗ − α)1/2 with the amplitude of the x1 oscillation
already growing to approximately 0.36ro (that is 0.18 times the rest separation between the
particles) when α = α∗ − 0.005. In figure 3 we see that the period of the periodic orbit
varies linearly but slowly with α, varying by less than one percent over the same range of
values of α. The square root variation of the amplitude, and linear variation of the period
are characteristic of Hopf bifurcations, and we conclude that a Hopf bifurcation occurs in
the time-reversed surrogate system, and hence in the original state-dependent DDE. For the
time-reversed system, the bifurcation is subcritical since the fixed point is stable for values of
α for which the periodic orbit exists, but unstable in the parameter regime for which periodic
orbits do not exist.

In figure 4 we show the evolution of the periodic orbits as α is varied by plotting 20
periodic orbits for different values of α. Away from the critical value α∗, the orbits have
increasing amplitude for the oscillation of the light particle m1 about the rest value ro, while
the heavy particle m2 is virtually at rest, but is perturbed away from its equilibrium value.
This perturbation of the heavy particle from equilibrium is caused by the periodic motion of
the light particle m1, which over one period exerts an average force on the heavy particle m2

which is greater than if m1 were at rest, effectively moving the equilibrium point for the heavy
particle. For these large amplitude solutions the periodic orbit found does not enclose the
fixed point x1 = x2 = ro and so we are far from the linear case for which periodic orbits have
the form xk = ro + roAk exp(iωt) and are thus necessary concentric about x1 = x2 = ro. The
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Figure 2. Bifurcation diagram showing the amplitude of periodic orbits with m1 = 1, m2 = 250,
ro = 27.946 237, α∗ = 0.115 232 and Tc = 1755.913 842. Amplitude is measured using the light
particle x1 and scaling by ro, so amplitude = 1

ro
(maxτ1 {x1(τ1)} − minτ1 {x1(τ1)}). A log-scale is

used to show that the amplitude of the periodic orbit varies: amplitude ∝ (α∗ − α)1/2.
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Figure 3. Bifurcation diagram showing period of periodic orbits with m1 = 1, m2 = 250,
ro = 27.946 237, α∗ = 0.115 232 and critical period Tc = 1755.913 842.

linearized dynamics, which treat the delays as constant, and so strictly are only valid in the
limit of infinitesimally small oscillations, however do provide a reasonable approximation to
the dynamics of the full system in the case of orbits of small amplitude.

Similar dynamics can be observed with other mass ratios, though when m2/m1 is very
large, the oscillations of the heavy particle are barely discernable, and in figure 5 a branch of
periodic orbits is shown for m1 = 1 and m2 = 1836.
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Figure 4. Twenty periodic orbits with m1 = 1, m2 = 250, ro = 27.946 237 and different values
of α for each orbit between 0.110 232 (the largest orbit) and 0.114 982 (the smallest orbit) smaller
than the critical value α∗ = 0.115 2323.
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Figure 5. Amplitude (varying quadratically) and period (varying linearly) of branch of periodic
solutions as α is varied with m1 = 1, m2 = 1836, ro = 204.5541, εo = 5.974 8034 × 10−6 and
α∗ = 0.150 1618.

6. The Wheeler–Feynman case (b)

In the case χ = 0 the equation of motion is of mixed type, i.e.

mk

dφk

dτk

= exp
(
2φ−

j

)
2r2

kj (−)
+

exp
(−2φ+

j

)
2r2

kj (+)
− εk. (24)
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Equation of motion (24) for particle k uses the other particle’s position and velocity at the
advanced time t+

j defined by the state-dependent condition (3) and the other particle’s position
and velocity at the retarded time t−j defined by the state-dependent condition (4).

With (5)–(7) the fixed points are the same as for the χ �= 0 case, (i) the unphysical point,
xk = ro and φk = yk = 0, and (ii) the physical point, xk = −ro and φk = yk = 0, where again
2ro > 0 is the separation at the fixed point. The characteristic equation (11) is real for both
cases and the determinant is

(∓1 − α1 + m1roσ
2)(∓1 − α2 + m2roσ

2) = (σ sin(σ ) ∓ cos(σ ))2. (25)

To solve equation (25) it is convenient to set α1 = α and α2 = κα, so that κ = α2/α1 when
α1 �= 0. Then equation (25) can be written as a quadratic in α:

0 = κα2 + [±(1 + κ) − (κm1 + m2)roσ
2]α

+ (1 ∓ m1roσ
2)(1 ∓ m2roσ

2) − (σ sin(σ ) ∓ cos(σ ))2 (26)

with discriminant

d(κ, σ ) = [(1 − κ) ± (κm1 − m2)roσ
2]2 + 4κ(σ sin(σ ) ∓ cos(σ ))2. (27)

Equation (27) illustrates the first qualitative difference of the χ = 0 dynamics from the χ �= 0
case considered before. Since d(κ, 0) = (1+κ)2, for both the physical and nonphysical points,
whenever κ �= −1 (that is whenever α1 �= −α2) the discriminant d(κ, σ ) > 0 for all small
σ and so (26) has two solutions, and the center-manifold harmonic oscillation exists in the
neighborhood of both points (i) and (ii). Similarly, whenever κm1 �= m2 we have d(κ, σ ) > 0
for all σ sufficiently large, and again (27) has two solutions.

Moreover, let � = {σ > 0 : (σ sin(σ ) ∓ cos(σ )) = 0} and �∗ = {σ ∈ � :
(1 − κ) ± (κm1 − m2)roσ

2 = 0}, and note that the points of � are close to nπ for large
σ . If κm1 �= m2, then �∗ contains at most one point which is defined by

roσ
2 = ±(κ − 1)

(κm1 − m2)
.

This point only exists if the right-hand side is positive, and the resulting σ is contained in �,
so generically �∗ = ∅, but the parameters can always be deliberately chosen to make �∗ be
nonempty. On the other hand, if m1 = m2 and κ = 1, then �∗ = � and contains countably
many points. Now, for all κ > 0, and all σ > 0 such that σ �∈ �∗, we have d(κ, σ ) > 0 and
so harmonic oscillations exist for both points (i) and (ii) for any positive ratio of α2/α1 and
any σ �∈ �∗.

The exceptional set �∗ is also very interesting. If σ ∈ �∗, then the discriminant
d(κ, σ ) = 0 and the quadratic equation (26) has exactly one (repeated) root α. Also
equation (25) implies that (∓1−αk +mkroσ

2) = 0 for both k = 1 and k = 2 so that Bk = B± =
0 in equation (11), and solutions for Ak are arbitrary. This indicates a possible bifurcation
of higher co-dimension, which we will not study here. When κ > 0 either d(κ, σ ) >

0 or σ ∈ �∗, so there are no other cases to consider.
For κ < 0, first consider the case of κ = −1 when α1 = −α2. As noted above,

d(−1, 0) = 0, but we may also compute dσ (κ, 0) = 0 for all κ and

dσσ (−1, 0) = ∓8[Mro ∓ 1 − 2],

so at the unphysical point (i) dσσ (−1, 0) > 0 if Mro < 3, while at the physical point (ii)
dσσ (−1, 0) > 0 if Mro > 1 in which case, again, d(−1, σ ) > 0 for all σ sufficiently small and,
as for the cases κ �= −1, equation (26) has two solutions, and the center-manifold harmonic
oscillation exists in the neighborhood of both points (i) and (ii). Since for κ < 0 necessarily
κm1 �= m2, in this case there are always solutions of equation (26) for σ sufficiently large.
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Figure 6. A Periodic solution of the linearized equations of motion (9) with χ = 0, m1 = 1,
m2 = 2, ro = 103, εo = 2.5 × 10−7, σ = 2.5, κ = 2, α = 6.2502 × 103 and period
T = 5.0265 × 103 with A2/A1 = −1.1532.

Also when κ < 0 the set �∗ = ∅ for the physical point (ii) and contains at most one point
for the unphysical point (i). Nevertheless, it is possible for d(κ, σ ) < 0 for both the physical
and nonphysical point, and for d(κ, σ ) = 0 for σ �∈ �∗, when a center-manifold harmonic
oscillation exists, defined by the repeated root of (26), where since σ �∈ �∗, we expect a
different higher co-dimension bifurcation than in the case σ ∈ �∗.

It is interesting to observe that at χ = 0 both points (i) and (ii) have a center-manifold, but
that point (ii) loses the zero-amplitude harmonic orbit for χ �= 0. Our linear stability analysis
suggests that the case χ = 0 is exceptional, because then the determinant of equation (11)
is real and its vanishing poses a single condition, as opposed to two conditions for vanishing
real and imaginary parts at any χ �= 0. The fact that the case χ = 0 accepts a one-parameter
family of bounded circular orbits in the 3D case [12], while no one ever found a solution for
the case χ �= 0, suggests that it is the exceptional case which is the most interesting. The
phenomenon of losing solutions as χ varies is a bifurcation that we shall not investigate here.

7. Numerical integration of the Wheeler–Feynman case (b)

In the following we search for small-amplitude periodic oscillations near the physical point
(ii) and at χ = 0. To do this we first choose the masses m1 and m2, the field ratio κ , and ro.
Then choosing σ fixes ω and the period T of the zero amplitude solutions, and we solve (26)
to find the value of α for the bifurcation. Since (11) is real when χ = 0, solutions of the
linearized equations of motion (9) are then given by yk = Ak cos(ωt) where the amplitudes
Ak are related by

0 = B1A1 + B−A2

= (1 − α1 + m1roσ
2)A1 + (σ sin(σ ) + cos(σ ))A2, (28)

and the motions of the two particles are either in phase or anti-phase depending on sign(B1B−).
Such a periodic solution of the linearized equations is illustrated in figure 6.
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Next we consider the fully nonlinear equations of motion, equations (1), (24), (3) and (4),
and parametrize the solution by t = t1(τ1) = t2(τ2), whereby each proper time is a function
of the common particle time and τk is a monotonic function of t with derivative defined by
equation (22). There is no exponential runaway of solutions for the χ = 0 Wheeler–Feynman
dynamics, and so equations (1), (24), (3) and (4) can be numerically integrated forward or
backward in time. Equation (24) results in one advanced and one retarded argument for each
particle, so four shifted arguments in total. In the case of forward integration along a periodic
orbit the advanced time defined by (3) can be period-shifted to the past using

t+
j = tk +

∣∣xk(tk) + xj

(
t+
j

)∣∣ − T . (29)

Since the period of the oscillation at zero amplitude is

T = 2π

ω
= 4πro

σ
, (30)

which is greater than the bifurcation delay time 2ro as long as σ < 2π , equation (29) always
gives retarded times for small amplitude orbits when σ < 2π . If equation (29) does not result
in a delayed time, one must subtract a higher multiple of T. We refer to equations (1), (24), (29)
and (4) as the forward surrogate dynamical system, which now has four delays. As before, if
the surrogate system has a periodic orbit of period T, then this is a periodic orbit of the full
nonlinear equations of motion. Similarly, if integrating backward in time equation (4) must be
replaced by (23), resulting in a backward surrogate dynamical system (1), (24), (3) and (23)
(with four ‘advances’).

For oscillations of small amplitude

xk = −ro + roAk cos(ωt), (31)

is an approximation for the periodic orbit, and can be used as an initial history to start the
numerical integration, which is again performed with RADAR5 [10]. However, in contrast to
the Dirac case, in the Wheeler–Feynman case of χ = 0 the equation of motion (2) is reversible
even with the non-constant electric field. Therefore, if a periodic orbit or other invariant set
has a stable manifold, it will also have an unstable manifold. This prevents us from using
the numerical approach we applied in the Dirac case, where we used the attractivity of an
invariant manifold to locate the periodic orbits for the nonlinear dynamics, since such an
attractive manifold cannot exist in the Wheeler–Feynman case; manifolds and orbits are either
neutrally stable or have saddle structure. We illustrate this by solving the nonlinear equations
of motion for the forward and backward surrogate systems starting from the initial history (31)
and using the same parameters as in the linear example of figure 6.

Figure 7 shows an orbit for the forward surrogate dynamical system with initial history
given by a small amplitude periodic orbit of period T of the linearized equations and integrated
over a time interval of 25T . The solution of the forward surrogate system is clearly not periodic
of period T. Although the two particles oscillate with approximately the predicted frequency,
there is a gradual phase shift between the oscillations. Numerical experiments reveal that
decreasing the initial amplitude of the orbit results in a slower drift, but that the drift cannot
be eliminated for non-zero amplitudes for these parameter values. This suggests that there
is a family of periodic orbits bifurcating from the trivial solution, in a sub- or super-critical
Hopf bifurcation for some perturbed parameter values, but because of the lack of stability it is
impossible to isolate this family of periodic solutions with the numerical techniques available.
Nevertheless, the nonlinear orbit seen in figure 7 likely gives a good approximation to the
unstable manifold of such a periodic orbit. Figure 8 is similar, except that it shows an orbit for
the backward surrogate system. This also drifts away from the linear periodic orbit, but since
this drift is backward in time this orbit is approaching the periodic solution of the linearized
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Figure 7. A solution of the forward surrogate dynamical system with χ = 0, m1 = 1, m2 = 2,
ro = 103, εo = 2.5 × 10−7, κ = 2 and α = 6.2502 × 103. The periodic solution of the linearized
equation (9) with σ = 2.5, period T = 5.0265 × 103 and A1 = 0.139 01, A2 = −0.160 28 (solid
straight line) is used as the initial history for the solution of the nonlinear equation (2) which is
plotted progressively darkening shades (of red).
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Figure 8. A solution of the backward surrogate dynamical system with χ = 0, m1 = 1, m2 = 2,
ro = 103, εo = 2.5 × 10−7, κ = 2 and α = 6.2502 × 103. The periodic solution of the linearized
equation (9) with σ = 2.5, period T = 5.0265 × 103 and A1 = 0.139 01, A2 = −0.160 28 (solid
straight line) is used as the initial history for the solution of the nonlinear equation (2) which is
plotted in progressively darkening shades (of blue).

equations, and so gives an approximation to the stable manifold. However, the linear periodic
orbit is not a solution of the nonlinear equations, so the nonlinear solution after approaching
this orbit will drift away from it along the orbit plotted in figure 7.
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Figure 9. A solution (plotted in gray) of the forward surrogate dynamical system with χ = 0,
m1 = 1, m2 = 2, ro = 103, εo = 2.5 × 10−7, κ = 2 and α = 6.2502 × 103. The periodic
solution of the linearized equation (9) with σ = 2.5, period T = 5.0265×103 and A1 = 0.139 01,
A2 = −0.160 28 (shown in black) is used as the initial history for the solution of the nonlinear
equation (2) which is plotted over a time interval of 600T .

Although the solutions of the forward and backward surrogate systems drift away from
the periodic solution of the linearized equations, unlike the Dirac case, there is no runaway
instability in the Wheeler–Feynman case and the orbits of the surrogate dynamical system
remain bounded for all time. We plot one such orbit in figure 9 over a time interval of 600T .
The oscillations of the two particles, which start in the phase (along the solid line in the figure)
persist over this time interval and return into the phase (dashed line in the figure). Integrating
another 600T time units, the system returns to the original configuration. This memory of the
initial conditions is another reason why our approach from the previous section of integrating
toward the periodic orbit will fail; not only will the periodic orbit have an unstable manifold
if it has a stable manifold, but any error between the initial conditions and the periodic orbit
are retained rather than converging to zero through the computation.

For general values of the parameters, we would like to vary α slightly from the bifurcation
value and find a bifurcating family of periodic orbits for the full nonlinear equations, but
as illustrated above, this approach will not work using RADAR5 because of the lack of
stability of the orbits. The lack of stability would not be a problem if we had access to a
boundary value problem solver that could directly find the periodic orbits of an implicitly
state-dependent advanced-retarded system, but although such numerical solvers exist for fixed
and explicitly state-dependent advanced-retarded systems [13], there is no such software for
implicitly state-dependent problems, such as we consider.

Since it is not possible to start from a linear approximation and use stability to converge
to the periodic orbit of the full nonlinear system, we seek special values of the parameters for
which the full nonlinear system has periodic orbits which correspond to the periodic orbits of
the linearized system, and we find two classes of such solutions.

Figure 10 shows a periodic orbit of the full nonlinear system (1), (24) and (3)–(4) with
the same masses m1, m2, separation ro and field ratio κ as in the previous example. The
only modification to the previous example is to set σ = π in the linearized equations used to
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Figure 10. A periodic solution of period T = 4004.625 of the nonlinear system with χ = 0,
m1 = 1, m2 = 2, ro = 103, εo = 2.5×10−7, κ = 2 and α = 9.8696×103 for which the linearized
equations have σ = π and Tc = 4000.

define the initial history which result in different values of α and Tc at the bifurcation point.
Figure 10 shows 250 periods of the solution of the full nonlinear equations with no apparent
phase drift (compare to the drift seen in figure 7 over just 25 periods in the previous example).
There is actually a whole family of such periodic solutions of the full nonlinear equations
which we illustrate in figure 11 by showing the motion of particle 1 only (the motion of
particle two is the same and in phase) for twenty such periodic orbits. This figure also shows
that the amplitude of the oscillations remains constant. The numerical integration of the full
nonlinear equations works in this case due to an extra symmetry introduced by the choice of
σ = π . In this case the period of the zero amplitude solutions is T = 4πro/σ = 4ro which
is twice the separation distance 2ro, so the advances and delays are exactly half a period,
and fall on the same point in the periodic orbit for solutions of zero amplitude. In the full
nonlinear system the period increases from T = 4ro = 4000 (for the zero amplitude solutions)
proportionally to the square of the amplitude of the solution (the largest orbit shown in figure 11
with a period of 4018.46).

In the two examples above, κ is chosen to be equal to the ratio m2/m1, because this
was found to result in motions where both particles oscillate with similar amplitudes. Other
choices of κ lead to the lighter particle having an amplitude of oscillation orders of magnitude
larger than that of the heavier particle. This raises the question of whether we can choose
parameter values which allow one particle to oscillate, while the other particle remains fixed
in place, i.e. the frozen proton orbit. We now show that the linearized equations admit such
solutions, and show numerically that they can persist for the full nonlinear equations.

Using the notation of (12), and recalling that χ = 0 for the Wheeler–Feynman case,
choosing parameters such that B− = 0, B1 = 0 and B2 �= 0 equation (11) is satisfied for
A2 = 0 and arbitrary values of A1. In the notation of the previous section B− = 0 and one
of Bi = 0 implies that σ ∈ � (while �∗ is the set of σ such that B− = B1 = B2 = 0).
In numerical experiments we found that these orbits persist for the full nonlinear equations
when the mass ratio m2/m1 and the separation ro are large. For small separations, or small
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Figure 11. Periodic solutions of the nonlinear system with χ = 0, m1 = 1, m2 = 2, ro = 103,
εo = 2.5 × 10−7, κ = 2, and α = 9.8696 × 103 for which the linearized equations have σ = π

and Tc = 4000, and the full nonlinear equations have periodic with period greater than 4000, with
the period increasing with the amplitude. The motion of the first particle only is shown, and the
smallest orbit shown has period T = 4000.046 28 growing to T = 4018.46 for the largest orbit.
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Figure 12. A periodic solution of the full nonlinear system with period T = 4.491 608 × 105 and
χ = 0, m1 = 1, m2 = 1836, ro = 105, εo = 2.5×10−11, α1 = 7.830 97×105 α2 = 7.188 25×108

for which the linearized equations have periodic orbits with particle 2 being stationary, and particle
1 performing periodic orbits of the form (31) about −ro of arbitrary amplitude with σ = 2.798 386
and Tc = 4.490 578 × 105.

mass ratios, or when B2 ≈ 0, the heavily particle begins to oscillate with a small but growing
amplitude.

In figure 12 we show such an orbit for the full nonlinear system with m2 = 1836,
ro = 105 and B2 = α2 = (1 + m2roσ

2)/2. The orbit is shown over 25 periods during which
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Figure 13. The motion of particle 1 for 20 periodic solutions of different amplitude and period
for the nonlinear system with χ = 0, m1 = 1 , m2 = 1836, ro = 105, εo = 2.5 × 10−11,
α1 = 7.830 97 × 105 α2 = 7.18825 × 108 for which the linearized equations have σ = 2.798 386
and Tc = 4.490 578 × 105, and the full nonlinear equations have a periodic orbits whose period
increases with the amplitude of the solution (for the orbits shown T varies between 4.490 619×105

and 4.507 037 × 105).

the heavy particle remains stationary to machine precision (the variation in x2 over the whole
time integration was ±1.35 × 10−17 from −ro). In figure 13 we plot the motion of particle 1
only for the same orbit and 19 others, showing that there is a family of co-existing periodic
orbits of this form. As in the previous example we find that the period of the nonlinear
solutions increases from the critical period Tc at zero amplitude, proportional to the square of
the amplitude.

8. Conclusions and perspectives

In this paper, we have studied the electromagnetic two-body problem without introducing
any approximation, i.e. keeping the state-dependent character of the interactions. By using
a surrogate dynamical system, making use of the periodicity to convert advances to delays
or vice versa, and in the case of the Dirac model integrating backward in time, and using
appropriate software [10], we are able to determine periodic solutions for the equations of
motion of two particles moving along the same straight line. This setup, besides providing a
testbed for the algorithms to handle equations with state-dependent delay, revealed some of the
subtleties of the Lorentz–Dirac equations, confirming that qualitative differences arise when
both particle masses are finite. For the Dirac case we showed that no bifurcation can occur at
the physical fixed point. For the unphysical point we found a bifurcating orbit of the Dirac-like
case, which served as an example of state-dependent delay dynamics with electromagnetic-
like difficulties. We determined a subcritical Hopf bifurcation for the surrogate equations of
motion and thus for the Dirac-like equations near the unphysical point. The linear stability
analysis also guided the search for periodic orbits for the Wheeler–Feynman case, and we
found several interesting families of periodic orbits of physical interest. The bifurcation
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structure of the fixed point in the Wheeler–Feynman case could not be accessed because of the
time-reversibility of the system. The frozen-particle orbit could be expected in this setup given
the linear dependence of the electrostatic external field at each particle. In a three-dimensional
setup the external force is not needed for a bounded orbit, as the attraction can provide the
centripetal force for rotation. The analog of a frozen-particle orbit for a three-dimensional
case without external field should be interesting. Given the peculiarity of the 1D case, it would
certainly be interesting to pass to the more realistic and physical case of a 2D/3D setup. A
linearized version of such a case is considered in [15]. Our method might be generalizable to
find periodic orbits of electromagnetic motion in three spatial dimensions, but unfortunately,
apart from the one-dimensional motion, the Wheeler–Feynman equations are neutral-delay
equations. For such equations solution derivatives can be discontinuous and there may be
solution termination [16], while periodic orbits with a discontinuous acceleration at breaking
points could exist [14]. Furthermore, an even less intuitive two-body dynamics could be found
for larger velocities (close to the speed of light) [14], but in order to simulate these, it would be
necessary to handle the stiffness of the electromagnetic equations of motion. The bifurcation
analysis of the Wheeler–Feynman case, as well as a proper determination of the frozen proton
orbit, await the construction of a boundary-value problem solver for implicitly state-dependent
problems.
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